INVARIANT SOLUTIONS TO THE EQUATIONS OF SORPTION
EQUILIBRIUM DYNAMICS AND KINETICS

L. K. Tsabek UDC 66.071.7

The theory of continuous Lie groups is used for finding invariant solutions to the equation
of sorption kinetics, which describe the mass transfer in a porous symmetrical sorbent
grain corresponding to a nonlinear isotherm, and invariant solutions which describe the
mass transfer in a porous column with longitudinal stirring,

Invariant solutions to partial differential equations which represent specific solutions to individual
problems in a small particular class, constitute one way toward obtaining various approximate solutions to
problems in a larger general class. Thus, invariant solutions are widely used for solving problems in
gas dynamic [1, 2], heat and mass transfer [3, 4], and other problems contiguous to those. In searching
for invariant solutions we will use the theory of continuous Lie groups [5-8]. Since this is a local theory,
it is not possible by its methods to find the solutions to specific problems with arbitrary boundary condi-
tions (the groups in this case are very small and, essentially, yield trivial solutions which are of no
interest). In many applications, however, the difficulties due to the nonlinearity of partial differential
equations have resulted in a rather wide use of individual specific solutions for the analysis of such appli-
cations.

The sorption kinetics in symmetrical grains of a porous undeformed medium can be described by the
equation of mass transfer in dimensionless variables and by the equation of the sorption isotherm:
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with the symmetry condition at the grain center and with the zero initial and boundary conditions:
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Here the first boundary condition corresponds to an infinitely high rate of mass transfer and the second
boundary condition corresponds to a finite rate of mass transfer at the outer grain boundary,

We note that transient nonlinear filtration of gas through porous media can be described by an equa-
tion analogous to (1) [9]. The infinitesimal operators X = £(8/8t) + n(8/8r) + 7(8/8c% allowable in terms
of Eq. (1) will be found from the determining equation [7, 8]. In Table 1 are listed various infinitesimal
operators and, for the most interesting case 1 < p < 2 encountered in their applications, single-parameter
subgroups of these operators. For a linear isotherm q’ = ke® the subgroup X; + oX, yields the solution
(%)

e, t) = Aeatr J ( =) #ar). By the way, this solution can be obtained by a separation of variables.
2

The subgroup X, + aX, yields the automorphic solution y = (1 + k)r?/4t,

(%—‘;*”)e_y@( 1+v4+2oa , lj;v, yz).

A =4

For an arbitrary isotherm q° = £(c%) the operator X, has the automorphic solution y = r-2t,
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This equation can be integrated numerically without difficulty, if it is reduced to an integral equation solv-

able by the method of successive approximations. For the isotherm g = qf(c®) @ *P) — ¢ of the subgroup
Xy +X, we have y =t — o Inr, cO(r, t) = exp (-2t/ ap)L(y), while the subgroup aX, + X, yields the auto-
a—2

morphic solution y = r=¢t, c(r, t) =t * 'L(y). For function L(y) we will obtain a nonlinear ordinary dif-
ferential equation, after the preceding invariant solutions have been inserted into Eq. (1). For the isotherm
q = gjfexp bc’) — 1] — c® of the subgroup aX; + X, we have y =t — o Inr, c'(r, t) = exp (-2t/ ab)L(y); while

; @2

the subgroup aX, + X, yields the automorphic solution y = r~%t, e, t) =t (W)L(y).

On the basis of the automorphic invariant solutions, one can reduce the nonlinear equations to a sys-
tem of linear (or less nonlinear) equations with an unknown shiftable boundary {the Lame - Clapeyron-Stefan
problem) by approximating a nonlinear isotherm q° = f(c%) with a piecewise linear (or piecewise nonlinear)
function {10-12]. The validity of reducing the Stefan problem to a nonlinear parabolic equation has been dis-
cussed in [13]. For the piecewise approximation of a nonlinear isotherm

By, 0L <,
g =4 kiac_ TR 6 << g, )
kn+1 o, C:; << (i= 2, 3, n):

Eq. (1) with a shiftable boundary becomes at the break points yf (t) on such an isotherm:

. 0 0%0 oc? R .
Q) =22 2 2 g 0<r<o, 1>0 )

For the zero initial and boundary conditions (concentration continuity and concentration flow at the break
points on the isotherm) we write

Al Di==0 Y Oheo=0 ¢=1,2, ..., 1), 6)
. . 1 +&;, oc (r, ¢ o, (r, ¢
(G} 0, ) =, W O, 0, [( 1+k.1 ) ‘! gr ) ct+é£r )] ey =0 (7)

For plates which simulate grains in an undeformed medium (v = 0) {14] we find, with the aid of the sub-

group X, —X; + oX;, the automorphic solution y; = l/l :‘;tki 1-r),

1 —2a 1 3—2¢ 3
qr, =40/ , —, — | +By®|= v = =y
He 9 ( 4 2 y?)Jr 9 ( 4 2 y‘) ®

By varying the arbitrary parameter o, one can modify the function c;(t) in the boundary conditions (2). For
co(t) = cf = const (@ = 1/2) we obtain from (8)

A(r, 1) = A4, + B eri(y,). )

Taking into account conditions (2) and (6), we find

7)) =1— 2, l/ T-T—tT (@; = const), =4,y

_G—=D
" el oy,

(10)
¢ —c & —c
Ai — C?—- i i—1 , B — f3 i—1 ,
t erf(a;) —erf(a;_4v; ) ! » erf (@;) —erf(@;—7;_4)
. c‘
¥ = Atk (=23, ...,1n), Ad=—B =—0

14 & erfc (a,) ~
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From conditions (7) we obtain a system of transcendental determining equations:

TG=00, o,,=0 (=0 ¢, =c)

.

c. —¢C

» ' ’ & - ]
Y 1 2 i+ { .
Vi exp(—a) [erf (@;) —erf(@;_v; _1)] - %exp( o 7)) [ erf (a;,,) —erf(e;7,)

Solution (9) is valid for short time intervals t < (1 +k;) and finite grain dimensions or for any lengths
of time and large grains (@ — «), when the symmetry condition (2) at the grain center (r = 0) may be dis-
regarded. The symmetry condition can be replaced here by the condition cg (r, t)!r —¢ = 0. For grains of
finite dimensions this condition yields an estimate of the time after which solution (9) becomes valid,

For any time and for grains of any dimensions with an arbitrary symmetry parameter v (1 < v < 2)

we obtain, with the aid of the subgroup X, + aX,, the automorphic solution y; = T ir,
(1_'_+_‘i) 14+v—20 14w ; 3_—_v—21 3—w o
A=t * [Aicb( e -4 +‘Biyi¢‘( - N (12)
Taking into account conditions (2) and (6), we obtain
(_(}__l+v) (H-v_}_)
imit 2 Fl=0, A=ctt P
-0 .
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4 ) g L — e H)
! (@ oFH,_  —eHF) "
. 14+v—2a 14w 2.2
FI.=CD( 1 , 9 —%v ] (13)
g ATE) @ Fi—GF)
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From the boundary conditions (7) follows ‘ _
1 4 o o 1+v—2a 34w , _-a?)
i(z L4v ¢ 2 T
1—w 3—v—2a 3—v ’2)
d — (1) R , —a
e
1 a (3 —v—2a bH—v 2)]
R (D ’ ’ “ai
+(2 K 3—v) ( 4 2 (14)
1 o 14+v—2a 3+v 5 )
= A, —_— (1Y ’ » _,ai'yz
A”‘(2 * l—l—v) ( 4 2 !
1—w 3—v—20 3—w
“+B;.a [(“i?i)_(l+v)( 2 )‘D( 2 -t —-a%ﬁ)
1 a (3—v—20 BH—w ;
= 1) , , —alyiyt.
+(2 - 3-—-'\7) ( 4 2 ‘vz)]

From Egs. (13) and (14) we obtain a transcendental system of equations for determining ¢j. By vary-
ing the arbitrary parameter ¢, one can modify the function cy(t) in the boundary conditions (2).
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The sorption dynamics in a porous undeformed medium can be described by the continuity equation
and by the equation of diffusive sorption kinetics [15]:

de(z’, t) ou(@e(@, t) dg ', t) 0 o 0c(@, 1) _
] =— D" (u) ——=}, 15
at’ + 0z’ + ot 0z’ @ 0z (15)
6 z,’ t, 14 ’ ’ '
BED @l 1)~ ). (16)
where, according to [16-19],
1 at n a
B  G+DE+ID, (DB
D' (4) = Dy + Dyu + Dyu?,
with the zero initial and boundary conditions
c@, )|r=o= ¢) = const (frontal sorption dynamics) (17)
c(z'y ') Jormo = €38 (8} (elutive sorption dynamics)
at c(Z, ) lrmo =1 —n (' — )] (18)

In order to set up COntinuods Lie groups, we will seek the following infinitesimal operator:

0 d 0 %)

X E=3 e — ¢ —— + T

S T T 0% 3

When u(z'") # const, system (15)-(16) will be rewritten in dimensionless variables:
dc dc dq 2

— =L et b =g, ——=c—[(g) 19
o T TR0 T %Y, 1)

where

u

Ct=pwt, z——,—j‘ B (u) de’, D:D’(u)’ﬁ(u)u—l,
0

1 du D 1 dD
= e ——— T e, '—_—‘1——"—“—'—:1—— Po-
D2 P P P P1= u iz P5P2
System (19) for an arbitrary isotherm g = f(c) allows a unique operator 8/6t + w(8/6z) (operator of
Galilean transfer with the front of the sorption wave traveling at the velocity w) at ¢;, ¢,, @ = const, For
such an operator the invariant solution y = z — wt allows us to reduce (19) to the system

de de dg d% dg A
Y —_ ¢ — 0w e =@, —, —W-— =(C— X 20
w i + ¢ a0 + @y ay P, i a1y )] (20)
c(—o0)=c=[(g) q(—o0)=g} c(+ ) =q(+ ) =0,
(4~ o) T 1
dy  dy syaim
System (20) is compatible only when ¢, = 0. Consequently, no parallel transfer mode exists when u(z")
# const,
When u(z') = const, system (15)~(16) in dimensionless variables becomes
dc dc dg dc Oq
— T s _pde Y9 .
o o Ty o e la
’ , 22
by, - BOZ L D@h@ =
u u?
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TABLE 2. Infinitesimal Operators and Single-Parameter Subgroups
Allowable in Terms of Eq. (26) (af, 9, 43, f5» ., b = const)

. a ad
Arbitrary f X;= ) P Xe=0; Xg= ™ Xy + wX,
f 9 9 1 9 8
f= -~ exp (xg) Xamgrs Xamtgr——mon Xo= oo | XutuXss X, +aXs
' fo i) d ¢ 8 . a
— (1+0) —— X, . A v .
I=asy M= =ty =y g K= 57| KatoXs XataXs
d a t\ d
X1=—25‘z‘+t'5t—+<62——;‘)qa—q'; X Xz +aXs
=2
F= a d d
Xz—_a;vxa o X4=Q‘a? X+ Xo X1+ X5 X,

For an arbitrary isotherm the system (22) allows a unique operator 9/8t + w(9/8z). The invariant
solution y = z - wt allows us to reduce the system (22) of partial differential equations to a system of or-
dinary differential equations. After integrating, with conditions (21) taken into account, we obtain

de dg ]
1 Lowg =D -2, —w A —c—f(g), w=——irpy- 23
( w) ¢ -+ dwg dy Ay c—f(q Cg T 55]% (23)

It has been shown in {13] that, when D = 0, system (22) with the boundary conditions (17) has an
asymptotic solution, for a convex isotherm, which is a sorption wave traveling at the velocity w. It can
also be shown that, when D = 0, system (22) with the boundary conditions (17) admits a physically feasible
solution for a convex isotherm, which is a sorption wave.

In some applications [13, 20, 21] one often uses the approximate system (15)~(16) at D ~ 0, Asymp-
totic approximations of the equations of sorption dynamics can be set up in another way. Indeed, since in
the case of elutive sorption dynamics (18) one considers the propagation of a 6(t) perturbation in a porous
medium ("dispersing" 5(t) perturbations will follow a quasi-Gaussian distribution curve whose shape is
determined by a given first initial and three central moments), it seems reasonable to use in the case of
a linear isotherm the expressions for the moments as the accuracy criteria for the equations in [16]. The
equations which have been obtained for a linear isotherm can be géneralized for a nonlinear one [16]. It
can be shown that, in the first asymptotic approximation, system (15)-(16) is — with respect to accuracy
— equivalent to the system

99

Jc dq
— 48— =0, =c—f(g), 24
0z + ot ot 9 (24)
where
! B* 1 8D' ()
tzﬁ*t,—'ﬁ*z , z___.__'_z__B_’ _1—_= + 2()_’
u u p* B u
or to the equation
oc oc 6 % .
7t TV T =71 (25)
where
Fu? Z'u u?
= , 2= , DF=D"(u-+ .
b br “r B
System (24) yields the equation
2
Pq , df 9q 59 _ (26)
0z0t dg 0z ot

In Table 2 are given the infinitesimal operators and single-parameter subgroups of these operators,
allowable in terms of Eq. (26). For a nonlinear isotherm, the operator of Galilean transfer X; + wX; has
an invariant solution, since this operator yields from (24) a compatible system of equations. The invariant
solutions for a linear isotherm will not be analyzed kere, because the constraint problem can in this case
be solved by the Riemann method or by means of the Laplace transformation. For a nonlinear isotherm
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f = (f,/ ) exp (nq), the subgroup X, + aX; yields the invariant solution y = texp ~z/a), ¢ =—2z/na + L(y),

c = exp (— —i—) {ﬂ + Lo exp (xL)VI, Clymg = aL + o exp (»L). (27
o dy = x 1 dt % ‘

From (26) we find the ordinary differential equation for determining the function L(y):

PL 9L 1y sa + g, exp (L)) + L2exp (ul) =0, 28)
dy? dy %
tim [EA + o exp (ML)} =0, (29
=0 | df ®

Condition (29) corresponds to the zero initial conditions. Equations (25) and (26) are valid for asymp-
totically large time infervals and column lengths and, consequently, the invariant solutions to (28) and the
analogous solutions which will be considered subsequently are the solutions to the constraint problems with
conditions 27). One may consider in the first approximation, however, that the asymptotic solutions are
weakly dependent on the form of the boundary conditions and the "ideal™ step conditions (17)~-(18) will be
transformed so as to put the asymptotic solutions in the form 27). The choice of the arbitrary parameter
o makes various solutions feasible,

A nonlinear isotherm f = (fp/ (1 + b))gt+ b) has the subgroup X, + aX; which yields the invariant solu~
tions y = texp (~z/ a),

Cewp |t R ) [y
q—EXp( ajL(y)’ ’ EXP[ ab }(dy+1+b ’

/
/

iii‘__l_ fo L+

di 14b

Clag =

and a corresponding equation for L(y) with the condition

dL

2
L +[1+%-5a+foy” }_dﬁ L Lt =0,

dy?

Yy
(30)

im| 4y o L(l“b)]:O.
@ 1+b

In Table 3 are given the infinitesimal operators and single-parameter subgroups of these operators,
- allowable in terms of Eq. (25). For an arbitrary isotherm, Eq. (25) admits the operator X, + wX,, which
corresponds to a parallel transmission of a sorption wave at the velocity w. For the invariant solution y
=z —wt at a convex isotherm, Eq. (25) yields after integration:

c

B 3 ~in _ de
Y=00)—Y =090 ;. o () dx, ¢ () It o0r@
§ (31)
4
BCER A

The integration constant y, is found from the integral version of Eq. (25).

For an isotherm q =qf —c/d + (qg/ n0) exp (nc), the subgroup X, + X, yields the invariant solution
y =texp(-z/a), ¢ = (1/n)lny + L(y}, ¢l -4 = (/%) Int + L), and, accordingly, the equation and con-
dition for L(y):

d2L
dy?

2

+2E 1y (1 —0) + g0 exp (uI)] - £ gBexp (nL) =0,
dy ® (32)

lim [_.L Int+L@)|=o.
% ]

-0 7
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TABLE 3. Infinitesimal Operators and Single-Parameter Subgroups
Allowable in Terms of Eq. (25)

, d :
Arbitrary q _ x1=—a—t-; X, =0; X3=“(% XitwX,
0
* ¢ 9 a a 1 9 7] Xy +wX,;
== gy~ 4 T eXp (% Xi=— Xog=t —+ —+—; Xg= — 1 3r
9=G— 5 T ) | Xi=gmXe=tor 4750 %= 57 | Xptrax,
M c G a 7} c 0 a Xt wXs;
g e T ) | X o X fem e s X g — vtwXs;
I=%~" +6(1+b)c e TR ot T T XytoX,
] ¢ ] o |xe x.x
= ke = X, = 1> “zr 23
7 =5 41488 o’ P ot FX X5
z 0 F 1 t 9 X5 Xy
T3 6z+c(4—4+4(1+6k)>6c T Xe+ X
] a4t Xg Xy
= 2 e pf —— e —— Xo+X
X3 Y + 2 e 'H‘[ 2 P + 4‘1“6;5
LR e )] 22] 0 . XX
4 (14-8k) 4 a ' XobXo;
PPN TN -1 AN R IV
=1, ”(2 T z) a ’ 14 X
o2 . 0
P N = ——
57 oz + 2 g’ Ot dc

For an isotherm q = gf — ¢/ & + (g}/8(1 +b))cl+b), the subgroup X, + aX, yields the invariant solution
y =texpz a), ¢ =exp (z/ba)L(y), clz=¢ = L(t), and the equation and condition for L(y):

eLdL [, 2 1 o«
AL T ogers 2 _g—a)|arf{Ll =)=y,
Y dy[%“ +”(b “)] (#%) (@)

L(0) = 0.

Equations (28), (30), (32), and (33) are integrable without difficulty or solvable in various approxi-
mations.

NOTATION
cte, b) is the concentration of a substance (sorbate) inside a porous grain of a sorbent;
q’r, t) is the concentration of a substance adsorbed by the inner surface of a porous grain;
t =t'Dj/a?;
r=r'/a;
!, rt are the dimensional independent variables;
% =Dj/aBy;
c is the concentration of sorbate in the stream;
u is the superficial flow velocity;
6 =06,/ (v —~1);
Sg= (@1 —0)/0;
g is the fraction of the free column space filled with granular sorbent grains;
By is the coefficient of (external) mass transfer at the outer surface of a sorbent grain;
q is the mean-over-the-grain concentration of the absorbed substance;
Dt is the dispersion factor accounting for the longitudinal stirring effect;
D; / is the diffusivity inside narrow channels of a sorbent grain;
kyy Ky are the sorption and desorption coefficient, respectively;
k= ki/knz;
v is the symmetry parameter (v = 2 for a sphere with a radius a; v =1 for a cylinder with
a radius a, v =0 for a plate with a thickness 2a);
O (t) is the delta function;
7 (t) is the unit-step function.
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